Rice residue burning trajectories in Eastern India: current realities, scenarios of change, and implications for air quality

Author:

Urban Cordeiro EmilyORCID,Hamilton Douglas SORCID,Rossiter D GORCID,Mahowald NatalieORCID,Hess PeterORCID,Malik Ram,Singh Ajoy,Samaddar Arindam,McDonald A JORCID

Abstract

Abstract In 2019, the Government of India launched the National Clean Air Program to address the pervasive problem of poor air quality and the adverse effect on public health. Coordinated efforts to prevent agricultural burning of crop residues in Northwestern IGP (Indo-Gangetic Plain) have been implemented, but the practice is rapidly expanding into the populous Eastern IGP states, including Bihar, with uncertain consequences for regional air quality. This research has three objectives: (1) characterize historical rice residue burning trends since 2002 over space and time in Bihar State, (2) project future burning trajectories to 2050 under ‘business as usual’ and alternative scenarios of change, and (3) simulate air quality outcomes under each scenario to describe implications for public health. Six future burning scenarios were defined as maintenance of the ‘status quo’ fire extent, area expansion of burning at ‘business as usual’ rates, and a Northwest IGP analogue, of which both current rice yields and plausible yield intensification were considered for each case. The Community Earth System Model (CESM v2.1.0) was used to characterize the mid-century air quality impacts under each scenario. These analyses suggest that contemporary Bihar State burning levels contribute a small daily average proportion (8.1%) of the fine particle pollution load (i.e. PM2.5, particles ⩽2.5 μm) during the burning months, but up to as much as 62% on the worst of winter days in Bihar’s capital region. With a projected 142% ‘business as usual’ increase in burned area extent anticipated for 2050, Bihar’s capital region may experience the equivalent of 30 PM2.5 additional exceedance days, according to the WHO standard (24 h; exceedance level: 15 µg m−3), due to rice residue burning alone in the October to December period. If historical burning trends intensify and Bihar resembles the Northwest States of Punjab and Haryana by 2050, 46 d would exceed the WHO standard for PM2.5 in Bihar’s capital region.

Funder

Bill and Melinda Gates Foundation

Cornell Atkinson Center for Sustainability

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

Reference43 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3