Years of life lost and life expectancy attributable to ambient temperature: a time series study in 93 Chinese cities

Author:

Ai SiqiORCID,Qi Jinlei,Liu Jiangmei,Wang Lijun,Yin Peng,Li Ruiyun,Wang Chongjian,Lin HualiangORCID,Zhou Maigeng

Abstract

Abstract Although increasing evidence has reported that unfavorable temperature may lead to increased premature mortality, a systematic assessment is lacking on the impact of ambient temperature on years of life lost (YLL) and life expectancy in China. Daily data on mortality, YLL, meteorological factors and air pollution were obtained from 93 Chinese cities during 2013–2016. A two-stage analytic approach was applied for statistical analysis. At the first stage, a distributed lag non-linear model with a Gaussian link was used to estimate the city-specific association between ambient temperature and YLLs. At the second stage, a meta-analysis was used to obtain the effect estimates at regional and national levels. We further estimated the corresponding YLLs and average life expectancy loss per deceased person attributable to the non-optimum temperature exposures based on the established associations. We observed ‘U’ or ‘J’ shaped associations between daily temperature and YLL. The heat effect appeared on the current day and lasted for only a few days, while the cold effect appeared a few days later and lasted for longer. In general, 6.90% (95% confidence interval (CI): 4.62%, 9.18%) of YLLs could be attributed to non-optimum temperatures at the national level, with differences across different regions, ranging from 5.36% (95% CI: −3.36%, 6.89%) in east region to 9.09% (95% CI: −5.55%, 23.73%) in northwest region. For each deceased person, we estimated that non-optimum temperature could cause a national-averaged 1.02 years (95% CI: 0.68, 1.36) of life loss, with a significantly higher effect due to cold exposure (0.89, 95% CI: 0.59, 1.19) than that of hot exposure (0.13, 95% CI: 0.09, 0.16). This national study provides evidence that both cold and hot weather might result in significant YLL and lower life expectancy. Regional adaptive policies and interventions should be considered to reduce the mortality burden associated with the non-optimum temperature exposures.

Funder

National Key R&D Program of China

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

Reference39 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3