Observed decade-long improvement of combustion efficiency in the Yangtze River Delta region in China

Author:

Zhao Jiarui,Chen HuilinORCID,Qi Ximeng,Chi Xuguang,Jia Mengwei,Jiang Fei,Zhong Sheng,Zheng BoORCID,Ding Aijun

Abstract

Abstract The ΔCO/ΔCO2 ratio is a good indicator of the combustion efficiency of carbon-containing fuels, and can be useful to assess the combustion efficiency on a regional scale. In this study, we analyzed in-situ observations of CO2 and CO concentrations from 2011 to 2021 at the Station for Observing Regional Processes of the Earth System (SORPES), in the Yangtze River Delta (YRD) region of eastern China, and calculated the ΔCO/ΔCO2 ratio to investigate the combustion efficiency in the YRD region. Furthermore, we used a Lagrangian particle dispersion model WRF-FLEXPART to evaluate the contribution of each emission sources to the observed ΔCO/ΔCO2 ratio. We found that the observed ΔCO/ΔCO2 ratio showed a persistent decreasing trend of 1.0 ppb/ppm per year and decreased ∼47.9% during this period, illustrating an evident improvement in the combustion efficiency in the YRD region. The improvement of the combustion efficiency is a result of China’s Air Pollution Prevention and Control Action Plan announced in 2013. However, the decrease of ΔCO/ΔCO2 ratio slowed down from 1.3 ppb ppm−1 per year during 2011–2016 to 0.6 ppb ppm−1 per year during 2017–2021. The simulation results reveal that the slowdown of the decrease in the ΔCO/ΔCO2 ratios can be explained by the slowing improvement of combustion efficiency in steel source in the industry sector. Our results verify the effectiveness of emission reduction efforts in the YRD region and highlight the necessity of long-term observations of CO2 and CO.

Funder

Youth Crossdisciplinary Team of the Chinese Academy of Sciences

Frontiers Science Center for Critical Earth Material Cycling

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3