Estimating integrated measures of forage quality for herbivores by fusing optical and structural remote sensing data

Author:

Jennewein J SORCID,Eitel J U H,Joly K,Long R A,Maguire A J,Vierling L A,Weygint W

Abstract

Abstract Northern herbivore ranges are expanding in response to a warming climate. Forage quality also influences herbivore distributions, but less is known about the effects of climate change on plant biochemical properties. Remote sensing could enable landscape-scale estimations of forage quality, which is of interest to wildlife managers. Despite the importance of integrated forage quality metrics like digestible protein (DP) and digestible dry matter (DDM), few studies investigate remote sensing approaches to estimate these characteristics. We evaluated how well DP and DDM could be estimated using hyperspectral remote sensing and assessed whether incorporating shrub structural metrics affected by browsing would improve our ability to predict DP and DDM. We collected canopy-level spectra, destructive-vegetation samples, and flew unoccupied aerial vehicles (UAVs) in willow (Salix spp.) dominated areas in north central Alaska in July 2019. We derived vegetation canopy structural metrics from 3D point cloud data obtained from UAV imagery using structure-from-motion photogrammetry. The best performing model for DP included a spectral vegetation index (SVI) that used a red-edge and shortwave infrared band, and shrub height variability (hvar; Nagelkerke R 2 = 0.81, root mean square error RMSE = 1.42%, cross validation ρ = 0.88). DDM’s best model included a SVI with a blue and a red band, the normalized difference red-edge index, and hvar (adjusted R 2 = 0.73, RMSE = 4.16%, cross validation ρ = 0.80). Results from our study demonstrate that integrated forage quality metrics may be successfully quantified using hyperspectral remote sensing data, and that models based on those data may be improved by incorporating additional shrub structural metrics such as height variability. Modern airborne sensor platforms such as Goddard’s LiDAR, Hyperspectral & Thermal Imager provide opportunities to fuse data streams from both structural and optical data, which may enhance our ability to estimate and scale important foliar properties.

Funder

Idaho Space Grant Consortium

National Aeronautics and Space Administration

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3