The role and deployment timing of direct air capture in Saudi Arabia’s net-zero transition

Author:

Qiu YangORCID,Iyer GokulORCID,Fuhrman JayORCID,Hejazi MohamadORCID,Kamboj PuneetORCID,Kyle PageORCID

Abstract

Abstract The Kingdom of Saudi Arabia (KSA) has pledged to achieve net-zero greenhouse gas emissions by 2060. Direct air carbon capture and storage (DACCS) is critical for the country to meet its net-zero target given its reliance on fossil fuels and limited options for carbon dioxide removal (CDR). However, the role of DACCS in KSA’s national climate change mitigation has not been studied in the literature. In this study, we aim to understand the potential role of DACCS and the effect of its deployment timing in KSA’s transition toward its net-zero target using the Global Change Analysis Model (GCAM)-KSA, which is a version of GCAM with KSA split out as an individual region. We find that the annual DACCS CO2 sequestration in KSA reaches 0.28–0.33 Gt yr−1 by 2060 depending on its deployment timing. Early DACCS deployment, driven by its early and rapid cost reduction worldwide, could bring significant savings (∼420 billion USD during 2020–2060) in the cost of climate change mitigation in KSA, approximately 17% reduction relative to delayed DACCS deployment. Our study suggests a strong role for KSA to proactively invest in the R&D of DACCS, initiate early DACCS deployment, and explore a broad suite of CDR options.

Funder

King Abdullah Petroleum Studies and Research Center

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3