Water use and electricity-for-water savings trends in three representative U.S. cities

Author:

Chaudron Camille,Gursel Aysegul PetekORCID,Kavvada IoannaORCID,Horvath Arpad

Abstract

Abstract A life-cycle assessment approach is used to analyze the energy demand and greenhouse gas emissions associated with potable water usage trends in three major cities of the United States in different regions and climates and relying on different types of raw water sources. Between 2011 and 2016, a decreasing trend in per-person water consumption is observed despite growing populations. The per-person water consumption decreased by 10% in Tucson (Arizona) and Washington, DC, and by 16% in Denver (Colorado). Leveraging certain distinctive water and electricity supply characteristics of the case study cities can provide insights into potential interventions and cross-comparison for generalizing trends. In Tucson, potable water production is the most energy intensive and electricity is produced mainly from coal. The greenhouse gas emissions of the per-person water consumption in Tucson are about five times higher compared to Denver and Washington, DC, thus water savings in Tucson should be particularly pursued. GHG emissions decreased in the period by even higher percentages than water use: 15%, 14% and 27% between 2011 and 2016 for Tucson, Washington, DC, and Denver, respectively. In 2015, just four years’ worth of forgone GHG emissions in Tucson were somewhat higher than the total GHG emissions associated with water consumption in all of Washington, DC, a city with the same population size as Tucson. Results show that cities should prioritize promotion of water savings to decrease the average per-person water consumption because it can be achieved and can compensate for increases in population. Lower greenhouse gas emissions can be attained in tandem with the local electric power industry.

Funder

National Science Foundation

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3