Utilizing CO2 as a strategy to scale up direct air capture may face fewer short-term barriers than directly storing CO2

Author:

Brazzola NicolettaORCID,Moretti ChristianORCID,Sievert KatrinORCID,Patt Anthony,Lilliestam Johan

Abstract

Abstract Direct air capture (DAC) is increasingly recognized as a necessary puzzle piece to achieve the Paris climate targets. However, the current high cost and energy intensity of DAC act as a barrier. Short-term strategies for initial deployment, technology improvement, and cost reduction are needed to enable large-scale deployment. We assess and compare two near-term pathways leading to the same installed DAC capacity and thus yielding the same cost reductions: its combination with CO2 storage as direct air carbon capture and storage, or its deployment for CO2 utilization as direct air carbon capture and utilization e.g. for synthetic fuels, chemicals, and materials; we characterize these as Direct and Spillover pathways. Drawing on the Multi-level Perspective on Technological Transition as a heuristic, we examine both technical and immaterial factors needed to scale up DAC under the two pathways, in order to assess the pathways’ relative advantages and to identify possible short-term bottlenecks. We find neither pathway to be clearly better: the Direct pathway offers technical advantages but faces regulatory barriers that need to be resolved before deployment, while the Spillover pathway offers market and governance advantages but faces challenges related to hydrogen production and increasing resource needs as it scales up. There may be reasons for policymakers to therefore pursue both approaches in a dynamic manner. This could involve prioritizing the Spillover pathway in the short term due to possibly fewer short-term regulatory barriers and its ability to produce net-zero emission products for existing and accessible markets. Once short-term governance obstacles have been addressed, however, the Direct pathway may allow for more efficient scaling of DAC capacity and cost reductions, especially if by then the needed infrastructure and institutions are in place.

Funder

H2020 Marie Skłodowska-Curie Actions

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Swiss Federal Office of Energy’s ‘‘SWEET’’ programme as part of the PATHFNDR project

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3