Toward a satellite-based monitoring system for urban CO2 emissions in support of global collective climate mitigation actions

Author:

Wilmot Taylor YORCID,Lin John CORCID,Wu DienORCID,Oda TomohiroORCID,Kort Eric AORCID

Abstract

Abstract Over the past decade, 1000s of cities have pledged reductions in carbon dioxide emissions. However, tracking progress toward these pledges has largely relied exclusively on activity-based, self-reported emissions inventories, which often underestimate emissions due to incomplete accounting. Furthermore, the lack of a consistent framework that may be deployed broadly, across political boundaries, hampers understanding of changes in both city-scale emissions and the global summation of urban emissions mitigation actions, with insight being particularly limited for cities within the global south. Given the pressing need for rapid decarbonization, development of a consistent framework that tracks progress toward city-scale emissions reduction targets, while providing actionable information for policy makers, will be critical. Here, we combine satellite-based observations of atmospheric carbon dioxide and an atmospheric model to present an atmospherically-based framework for monitoring changes in urban emissions and related intensity metrics. Application of this framework to 77 cities captures ∼16% of global carbon dioxide emissions, similar in magnitude to the total direct emissions of the United States or Europe, and demonstrates the framework’s ability to track changes in emissions via satellite-observation. COVID-19 lockdowns correspond to an average ∼21% reduction in emissions across urban systems over March–May of 2020 relative to non-lockdown years. Urban scaling analyses suggest that per capita energy savings drive decreases in emissions per capita as population density increases, while local affluence and economic development correspond to increasing emissions. Results highlight the potential for a global atmospherically-based monitoring framework to complement activity-based inventories and provide actionable information regarding interactions between city-scale emissions and local policy actions.

Funder

NASA

Publisher

IOP Publishing

Reference56 articles.

1. Urban systems and other settlements;Lwasa,2022

2. Global anthropogenic emissions in urban areas: patterns, trends, and challenges;Crippa;Environ. Res. Lett.,2021

3. World urbanization prospects 2018—population division—United Nations;Nations U,2018

4. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools;Seto;Proc. Natl Acad. Sci.,2012

5. On the impact of urbanisation on CO2 emissions;Luqman;npj Urban Sustain.,2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3