Substantial carbon sequestration by peatlands in temperate areas revealed by InSAR

Author:

Khodaei BehshidORCID,Hashemi HosseinORCID,Salimi Shokoufeh,Berndtsson Ronny

Abstract

Abstract Peatlands are unique ecosystems that contain massive amounts of carbon. These ecosystems are incredibly vulnerable to human disturbance and climate change. This may cause the peatland carbon sink to shift to a carbon source. A change in the carbon storage of peatlands may result in surface deformation. This research uses the interferometric synthetic aperture radar (InSAR) technique to measure the deformation of the peatland’s surface in south Sweden in response to the seasonal and extreme weather conditions in recent years, including the unprecedented severe drought in the summer of 2018. The deformation map of the study area is generated through a time-series analysis of InSAR from June 2017 to November 2020. Monitoring the peatland areas in this region is very important as agricultural and human activities have already caused many peatlands to disappear. This further emphasizes the importance of preserving the remaining peat sites in this region. Based on the InSAR results, a method for calculating the carbon flux of the peat areas is proposed, which can be utilized as a regular monitoring approach for other remote areas. Despite the severe drought in the summer of 2018, our findings reveal a significant uplift in most of the investigated peat areas during the study period. Based on our estimations, 86% of the peatlands in the study area experienced an uplift corresponding to about 47 000 tons of carbon uptake per year. In comparison, the remaining 14% showed either subsidence or stable conditions corresponding to about 2300 tons of carbon emission per year during the study period. This emphasizes the importance of InSAR as an efficient and accurate technique to monitor the deformation rate of peatlands, which have a vital role in the global carbon cycle.

Funder

Center for Advanced Middle Eastern Studies, Lund University

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3