Ambitious efforts on residual emissions can reduce CO2 removal and lower peak temperatures in a net-zero future

Author:

Fuhrman JayORCID,Speizer SimoneORCID,O’Rourke PatrickORCID,Peters Glen P,McJeon HaewonORCID,Monteith Seth,Aldrete Lopez LauraORCID,Wang Frances M

Abstract

Abstract Carbon dioxide removal (CDR) is expected to play a critical role in reaching net zero CO2 and especially net zero greenhouse gase (GHG) emissions. However, the extent to which the role of CDR in counterbalancing residual emissions can be reduced has not yet been fully quantified. Here, we use a state-of-the-art integrated assessment model to develop a ‘Maximum Sectoral Effort’ scenario which features global emissions policies alongside ambitious effort across sectors to reduce their gross GHG emissions and thereby the CDR required for offsets. We find that these efforts can reduce CDR by over 50% globally, increase both the relative and absolute role of the land sink in storing carbon, and more evenly distribute CDR contributions and associated side-effects across regions compared to CO2 pricing alone. Furthermore, the lower cumulative CO2 and nonCO2 emissions leads to earlier and lower peak temperatures. Emphasizing reductions in gross, in addition to net emissions while disallowing the substitution of less durable CDR for offsets can therefore reduce both physical and transition risks associated with high CDR deployment and temperature overshoot.

Funder

ClimateWorks Foundation

National Research Foundation of Korea

Publisher

IOP Publishing

Reference57 articles.

1. Aspen institute launches coZEV initiative with major corporations to support zero-carbon shipping;Aspen Institute,2021

2. Feasibility of using sCO2 turbines to balance load in power grids with a high deployment of solar generation;Bennett;Energy,2019

3. Why residual emissions matter right now;Buck;Nat. Clim. Change,2023

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3