Distribution and bioaccumulation of heavy metals (Hg, Cd and Pb) in fish: influence of the aquatic environment and climate

Author:

Moiseenko T IORCID,Gashkina N A

Abstract

Abstract Mercury (Hg), cadmium (Cd) and lead (Pb) are toxic metals that continue to attract much attention because they are prone to be accumulated in fish tissues and can harm human health if taken up with food. Data acquired by studying the bioaccumulation of these metals in the various fish species from water bodies along a latitudinal gradient in Russia (from northern Arctic lakes to the southern mouth segments of the Volga River) are utilized to identify general tendencies and specifics in the accumulation of toxic metals depending on the aquatic environment and temperature. Results demonstrate that small quantities of the metals are accumulated in various functionally important organs: Hg is enriched in the liver and muscles, Cd in the kidneys and gills, and Pb in the kidneys and liver. The metals are proved to be simultaneously accumulated in all organs and tissues of the organism, and this reflects the uptake of the metals by the organism and their subsequent distribution in it. The aquatic environment and fish habitats affect the elements’ bioavailability. The metals are more significantly accumulated in predatory fish. At low Hg concentrations in the water, statistically significant dependences were identified between Hg accumulated in predatory fish organisms and concentrations of organic matter in the water. Cd is more bioavailable in waters with low pH. Pb displays the strongest dependence of its bioaccumulation in low-salinity water. Extensive data on fish in water bodies occurring in large territories in Russia, from the Arctic to warm southern latitudes, indicate that climate affects the intensity of Hg accumulation, whereas the accumulation of the other metals also depends on the Ca concentrations, with the uptake of these metals being more significant at low Ca concentrations. Concentrations of toxic metals in the muscles of the fish were below the values critical to food to be consumed by humans.

Funder

Russian Science Foundation

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3