Climate change impacts the spread potential of wheat stem rust, a significant crop disease

Author:

Prank MarjeORCID,Kenaley Shawn C,Bergstrom Gary C,Acevedo Maricelis,Mahowald Natalie M

Abstract

Abstract Long range atmospheric transport is an important pathway for the spread of plant pathogens, such as rust fungi which can devastate cereal crop health and food security worldwide. In recent years, serious concern has been caused by the evolution of new virulent races of Puccinia graminis f. sp. tritici, a pathogen causing wheat stem rust that can result in close to 100% yield losses on susceptible wheat cultivars in favourable weather conditions. We applied an Earth system model to compare the suitability of the current climate and a business-as-usual climate scenario (RCP 8.5) for 2100 for wheat stem rust. Although there are large uncertainties in modelling changes in disease spread, we focus in this paper on the changes which are likely to be robust to model assumptions. We show that the warmer climate with lower relative humidity and enhanced turbulence will lead to ∼40% increase in the urediniospore emitting potential of an infected field as global average. The main predicted changes in the atmospheric long-range transport include reduced connections between Europe, Africa and South Asia, and increased frequency of spores crossing the mid-latitude oceans. Due to reduction in subfreezing conditions, the overwintering areas of the fungus will expand. On the other hand, projected drier conditions will reduce substantially the probability of an infection starting from deposited spores, except in irrigated fields.

Funder

National Science Foundation

Atkinson Center for a Sustainable Future, Cornell University

U.S. Department of Energy

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3