A century of variations in extreme flow across Finnish rivers

Author:

Gohari Alireza,Jalali Shahrood Abolfazl,Ghadimi Sahand,Alborz Mohammadreza,Patro Epari RiteshORCID,Klöve Björn,Torabi Haghighi AliORCID

Abstract

Abstract River flow in cold climates is known to be one of the hydrological systems most affected by climate change, playing a central role in the sustainability of downstream socio-ecological systems. Numerous studies on the temporal and spatial variations of streamflow characteristics have been done, and a comprehensive study on the variation of hydrologic extremes is becoming increasingly important. This study evaluated the long-running changes in the magnitude, time, and inter-annual variability of hydrologic extremes, including high and low flow in 16 major Finnish rivers. We applied four new hydrologic extreme indices for summer–winter low flow ratio, spring-absolute high flow ratio, time-to-peak index, and increasing rate index during the snowmelt period to analyze the spatiotemporal variations of extreme streamflow from 1911 to 2020. The most detected trends in flow regimes have started in the last six decades and become more severe from 1991 to 2020, which is likely to be dominated by anthropogenic global warming. The results also indicated that alteration of low pulses in most rivers was associated with an increase (decrease) in winter (summer) flows, suggesting the annual minimum flow in summer frequently contradicts natural hydrologic regimes in Arctic rivers. Southern Finland has experienced higher variations in extreme hydrology over the last century. A new low flow regime was detected for southern rivers, characterized by frequent annual minimum flow in summer instead of winter. Moreover, the annual maximum flow before/after spring dictated a new high-flow regime characterized by frequent double peak flows in this region.

Funder

Maa- ja Vesitekniikan Tuki Ry

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3