Visual impression and texture analysis of advanced modeled iterative reconstruction (ADMIRE): improved assessment of image quality in CT for better estimation of dose reduction potential

Author:

Alikhani BabakORCID,Raatschen Hans-Jürgen,Wacker Frank,Werncke ThomasORCID

Abstract

Abstract To evaluate the image quality (IQ) of advanced modeled iterative reconstruction (ADMIRE; Siemens Healthcare, Forchheim, Germany) applying image texture and image visual impression as a supplement to physical parameters such as noise level and spatial resolution. An ACR-phantom with four modules was examined at different radiation dose levels. To characterise the image texture, two Haralick texture parameters, contrast and entropy, were assessed at different dose levels and reconstruction algorithms. The visual impression of images and the low-contrast detectability were evaluated by the structural similarity index (SSIM). The spatial resolution was determined by the modulation transfer functions and the line spread function. The Haralick texture parameters, contrast and entropy, decreased with increasing ADMIRE levels. ADMIRE III, IV and V offered a comparable contrast and entropy to those calculated by filtered back projection (FBP) with a radiation dose reduction up to 50%. SSIM (low-contrast detectability) improved with increasing ADMIRE levels. SSIM calculated by ADMIRE IV and V revealed comparable IQ to FBP with a decreased CTDIvol up to 50%. Spatial resolution was retained up to 90% dose reduction. Compared to FBP at the same dose level, the image noise decreased up to 61% with higher ADMIRE levels (σ FBP = 17.3 HU and σ ADMIRE V = 10.6 HU at 6.65 mGy). Taking texture analysis and visual perception into account, a more realistic assessment of the dose reduction potential of ADMIRE can be achieved than quality metrics based alone on physical measurements.

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,Waste Management and Disposal,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3