Strained topological insulator spin field effect transistor

Author:

Bandyopadhyay SupriyoORCID

Abstract

Abstract The notion of a spin field effect transistor, where transistor action is realized by manipulating the spin degree of freedom of charge carriers instead of the charge degree of freedom, has captivated researchers for at least three decades. These transistors are typically implemented by modulating the spin orbit interaction in the transistor’s channel with a gate voltage, which causes gate-controlled spin precession of the current carriers, and that modulates the channel current flowing between the ferromagnetic source and drain contacts to implement transistor action. Here, we introduce a new concept for a spin field effect transistor which does not exploit spin-orbit interaction. Its channel is made of the conducting surface of a strained three dimensional topological insulator (3D-TI) thin film and the transistor function is elicited by straining the channel region with a gate voltage (using a piezoelectric under-layer) to modify the energy dispersion relation, or the Dirac velocity, of the TI surface states. This rotates the spins of the carriers in the channel and that modulates the current flowing between the ferromagnetic source and drain contacts to realize transistor action. We call it a strained-topological-insulator-spin-field-effect-transistor, or STI-SPINFET. Its conductance on/off ratio is too poor to make it useful as a switch, but it may have other uses, such as an extremely energy-efficient stand-alone single-transistor frequency multiplier.

Publisher

IOP Publishing

Subject

Community and Home Care

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3