Midgap state requirements for optically active quantum defects

Author:

Xiong YihuangORCID,Mathew MilenaORCID,Griffin Sinéad MORCID,Sipahigil AlpORCID,Hautier GeoffroyORCID

Abstract

Abstract Optically active quantum defects play an important role in quantum sensing, computing and communication. The electronic structure and the single-particle energy levels of these quantum defects in the semiconducting host have been used to understand their optoelectronic properties. Optical excitations that are central for their initialization and readout are linked to transitions between occupied and unoccupied single-particle states. It is commonly assumed that only quantum defects introducing levels well within the band gap and far from the band edges are of interest for quantum technologies as they mimic an isolated atom embedded in the host. In this perspective, we contradict this common assumption and show that optically active defects with energy levels close to the band edges can display similar properties. We highlight quantum defects that are excited through transitions to or from a band-like level (bound exciton) such as the T center and Se S i + in silicon. We also present how defects such as the silicon split-vacancy in diamond can involve transitions between localized levels that are above the conduction band or below the valence band. Loosening the commonly assumed requirement on the electronic structure of quantum defects offers opportunities in quantum defects design and discovery especially in smaller band gap hosts such as silicon. We discuss the challenges in terms of operating temperature for photoluminescence or radiative lifetime in this regime. We also highlight how these alternative type of defects bring their own needs in terms of theoretical developments and fundamental understanding. This perspective clarifies the electronic structure requirement for quantum defects and will facilitate the identification and design of new color centers for quantum applications especially driven by first principles computations.

Funder

Basic Energy Sciences

National Energy Research Scientific Computing Center

Publisher

IOP Publishing

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3