The temporal neurovascular coupling response remains intact during sinusoidal hypotensive and hypertensive challenges

Author:

Burma Joel SORCID,Rattana Selina,Oni Ibukunoluwa K,Lapointe Andrew P,Dunn Jeff F,Smirl Jonathan D

Abstract

Abstract Introduction. Neurovascular coupling (NVC) describes the coupling of neuronal metabolic demand to blood supply, which has shown to be impaired with chronic hypertension, as well as with prolonged hypotension. However, it is unknown the extent the NVC response remains intact during transient hypo- and hyper-tensive challenges. Methods. Fifteen healthy participants (9 females/6 males) completed a visual NVC task (‘Where’s Waldo?’) over two testing sessions, consisting of cyclical 30 s eyes closed and opened portions. The Waldo task was completed at rest (8 min) and concurrently during squat-stand maneuvers (SSMs; 5 min) at 0.05 Hz (10 s squat/stand) and 0.10 Hz (5 s squat-stand). SSMs induce 30–50 mmHg blood pressure oscillations, resulting in cyclical hypo- and hyper-tensive swings within the cerebrovasculature, allowing for the quantification of the NVC response during transient hypo- and hyper-tension. Outcome NVC metrics included baseline, peak, relative increase in cerebral blood velocity (CBv), and area-under-the-curve (AUC30) within the posterior and middle cerebral arteries indexed via transcranial Doppler ultrasound. Within-subject, between-task comparisons were conducted using analysis of variance with effect size calculations. Results. Differences were noted between rest and SSM conditions in both vessels for peak CBv (all p < 0.045) and the relative increase in CBv (all p < 0.049) with small-to-large effect sizes. AUC30 metrics were similar between all tasks (all p > 0.090) with negligible-to-small effect sizes. Conclusions. Despite the SSMs eliciting ∼30–50 mmHg blood pressure oscillations, similar levels of activation occurred within the neurovascular unit across all conditions. This demonstrated the signaling of the NVC response remained intact during cyclical blood pressure challenges.

Funder

Canadian Network for Research and Innovation in Machining Technology, Natural Sciences and Engineering Research Council of Canada

University of Calgary

OpenBCI Sponsorship Program

Canadian Institutes of Health Research

Publisher

IOP Publishing

Subject

Physiology (medical),Biomedical Engineering,Physiology,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3