Anti-motion imaging photoplethysmography via self-adaptive multi-ROI tracking and selection

Author:

Duan Yaran,He Chao,Zhou Mei

Abstract

Abstract Objective. The imaging photoplethysmography (IPPG) technique allows people to measure heart rate (HR) from face videos. However, motion artifacts caused by rigid head movements and nonrigid facial muscular movements are one of the key challenges. Approach. This paper proposes a self-adaptive region of interest (ROI) pre-tracking and signal selection method to resist motion artifacts. Based on robust facial landmark detection, we split the whole facial skin (including the forehead, cheeks, and chin) symmetrically into small circular regions. And two symmetric sub-regions constitute a complete ROI. These ROIs are tracked and the motion state is simultaneously assessed to automatically determine the visibility of these ROIs. The obscured or invisible sub-regions will be discarded while the corresponding symmetric sub-regions will be retained as available ROIs to ensure the continuity of the IPPG signal. In addition, based on the frequency spectrum features of IPPG signals extracted from different ROIs, a self-adaptive selection module is constructed to select the optimum IPPG signal for HR calculation. All these operations are updated per frame dynamically for the real-time monitor. Results. Experimental results on the four public databases show that the IPPG signal derived by our proposed method exhibits higher quality for more accurate HR estimation. Compared with the previous method, metrics of the evaluated HR value on our approach demonstrates superior or comparable performance on PURE, VIPL-HR, UBFC-RPPG and MAHNOB-HCI datasets. For instance, the RMSEs on PURE, VIPL-HR, and UBFC-RPPG datasets decrease from 4.29, 7.62, and 3.80 to 4.15, 3.87, and 3.35, respectively. Significance. Our proposed method can help enhance the robustness of IPPG in real applications, especially given motion disturbances.

Funder

Science and Technology Commission of Shanghai Municipality

Publisher

IOP Publishing

Subject

Physiology (medical),Biomedical Engineering,Physiology,Biophysics

Reference46 articles.

1. Unsupervised skin tissue segmentation for remote photoplethysmography;Bobbia;Pattern Recognit. Lett.,2019

2. Research on signal enhancement method in the measurement of human physiological parameters based on iPPG;Chen,2020

3. Improved motion robustness of remote-PPG by using the blood volume pulse signature;De Haan;Physiol. Meas.,2014

4. Neonatal face tracking for non-contact continuous patient monitoring;Dosso,2020

5. September. Imaging photoplethysmography: What are the best locations on the face to estimate heart rate?;Fallet,2016

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3