LDSG-Net: an efficient lightweight convolutional neural network for acute hypotensive episode prediction during ICU hospitalization

Author:

Liu Longfei,Hang Yujie,Chen RongqinORCID,He Xianliang,Jin Xingliang,Wu Dan,Li YeORCID

Abstract

Abstract Objective. Acute hypotension episode (AHE) is one of the most critical complications in intensive care unit (ICU). A timely and precise AHE prediction system can provide clinicians with sufficient time to respond with proper therapeutic measures, playing a crucial role in saving patients’ lives. Recent studies have focused on utilizing more complex models to improve predictive performance. However, these models are not suitable for clinical application due to limited computing resources for bedside monitors. Approach. To address this challenge, we propose an efficient lightweight dilated shuffle group network. It effectively incorporates shuffling operations into grouped convolutions on the channel and dilated convolutions on the temporal dimension, enhancing global and local feature extraction while reducing computational load. Main results. Our benchmarking experiments on the MIMIC-III and VitalDB datasets, comprising 6036 samples from 1304 patients and 2958 samples from 1047 patients, respectively, demonstrate that our model outperforms other state-of-the-art lightweight CNNs in terms of balancing parameters and computational complexity. Additionally, we discovered that the utilization of multiple physiological signals significantly improves the performance of AHE prediction. External validation on the MIMIC-IV dataset confirmed our findings, with prediction accuracy for AHE 5 min prior reaching 93.04% and 92.04% on the MIMIC-III and VitalDB datasets, respectively, and 89.47% in external verification. Significance. Our study demonstrates the potential of lightweight CNN architectures in clinical applications, providing a promising solution for real-time AHE prediction under resource constraints in ICU settings, thereby marking a significant step forward in improving patient care.

Funder

National Key Research and Development Program of China

Basic and Applied Basic Research Foundation of Guangdong Province

National Natural Science Foundation of China

Publisher

IOP Publishing

Reference36 articles.

1. An empirical evaluation of generic convolutional and recurrent networks for sequence modeling;Bai,2018

2. Falconnet: factorization for the light-weight convnets;Cai,2023

3. Prediction of patient-specific acute hypotensive episodes in icu using deep models;Chan,2019

4. Run, don’t walk: chasing higher flops for faster neural networks;Chen,2023

5. Review and update on inotropes and vasopressors;Cooper;AACN Adv. Crit. Care,2008

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3