Delving into the anisotropic interlayer exchange in bilayer CrI3

Author:

Stavrić SrdjanORCID,Barone PaoloORCID,Picozzi Silvia

Abstract

Abstract Bilayer CrI3 attracted much attention due to stacking-induced switching between the layered ferromagnetic and antiferromagnetic order. This discovery brought under the spotlight the interlayer Cr–Cr exchange interaction, which despite being much weaker than the intralayer exchange, plays an important role in shaping the magnetic properties of bilayer CrI3. In this work we delve into the anisotropic part of the interlayer exchange with the aim to separate the contributions from the Dzyaloshinskii–Moriya (DMI) and the Kitaev interactions (KI). We leverage the density functional theory calculations with spin Hamiltonian modeling and develop an energy mapping procedure to assess these anisotropic interactions with μ e V accuracy. After inspecting the rhombohedral and monoclinic stacking sequences of bilayer CrI3, we reveal a considerable DMI and a weak interlayer KI between the sublattices of a monoclinic bilayer. We explain the dependence of DMI and KI on the interlayer distance, stacking sequence, and the spin–orbit coupling strength, and we suggest the dominant superexchange processes at play. In addition, we demonstrate that the single-ion anisotropy in bilayer CrI3 is highly stacking-dependent, increasing by 50% from monoclinic to rhombohedral bilayer. Remarkably, our findings prove that iodines are highly efficient in mediating the DMI across the van der Waals gap, much owing to spatially extended 5p orbitals which feature strong spin–orbit coupling. Our study gives promise that the interlayer chiral control of spin textures, demonstrated in thin metallic films where the DMI is with a much longer range, can be achieved with similar efficiency in semiconducting two-dimensional van der Waals magnets.

Funder

Ministero dell’Istruzione, dell’Università e della Ricerca

Ministero dell’Università e della Ricerca

Publisher

IOP Publishing

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3