Abstract
Abstract
Heterobilayers consisting of MoSe2 and WSe2 monolayers can host optically bright interlayer excitons with intriguing properties such as ultralong lifetimes and pronounced circular polarization of their photoluminescence due to valley polarization, which can be induced by circularly polarized excitation or applied magnetic fields. Here, we report on the observation of an intrinsic valley-magnetophonon resonance for localized interlayer excitons promoted by invervalley hole scattering. It leads to a resonant increase of the photoluminescence polarization degree at the same field of 24.2 Tesla for H-type and R-type stacking configurations despite their vastly different excitonic energy splittings. As a microscopic mechanism of the hole intervalley scattering we identify the scattering with chiral TA phonons of MoSe2 between excitonic states mixed by the long-range electron hole exchange interaction.
Funder
HFML-RU/NWO
Walter-Benjamin Programme
Russian Foundation for Basic Research
European Magnetic Field Laboratory
RF
M. M
DFG
Foundation for the Advancement of Theoretical Physics and Mathematics “BASIS”
A.C.
Emmy-Noether Programme
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,General Chemistry
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献