Influence of contact angle on droplet parameters in ellipsoidal wettability model

Author:

Xu Zehua,Zhang Yanbin,Wang Xiaosen,Li Kangshuai,He QiangORCID

Abstract

Abstract Contact angle is one of the most important indexes to evaluate the hydrophobicity of solid surface. In order to explore the wetting characteristics of droplets on anisotropic solid surfaces, including contact angle, droplet radius, droplet height, contact radius, contact area and projected area, an ellipsoidal droplet contact angle model was established. Different from the ordinary plane ellipsoidal cap model, the major axis and minor axis of the elliptical cap shape in this model are not exactly the same in different planes. This model studied the relationship between contact angle and interface parameters in different planes. By collecting the droplet size parameters of fluororubber (FKM) prepared by template method, the correctness of the theoretical model was verified. Among them, the maximum error between the theoretical value of droplet radius and the actual measured value was 4.3%, and the maximum error of droplet projected area was 2.1%. It was found that the contact angle was inversely proportional to the droplet-solid contact radius and contact area, and directly proportional to the projected area of the droplet. In addition, for the same droplet on the surface of the same solid material, it was observed that the contact radius between the droplet and the solid was small in the direction of large contact angle. This discovery is helpful to explain the hydrophobic mechanism of the material surface with anisotropic contact angle.

Funder

Sichuan Science and Technology Plan Project

Publisher

IOP Publishing

Subject

Materials Chemistry,Surfaces, Coatings and Films,Process Chemistry and Technology,Instrumentation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3