Analysis of co-relation on LPBF process parameter on wear characteristics of Cu-Cr-Zr alloy

Author:

Saravana Kumar MORCID,Jeyaprakash NORCID,Yang Che-Hua

Abstract

Abstract Copper alloy bearings, gears, and fasteners have a significant impact on industrial sectors. However, due to the defect formation and void generation during the manufacturing of copper alloy parts using (Laser Powder Bed Fusion) LPBF technique, the wear resistance of the copper alloy was significantly affected. Hence, the prime novelty of the current research is enhancing wear resistance by analyzing the interaction of combined LPBF parameters. In order to decrease cavity forms and reduce the wear rate of the printed Cu alloy components, the important LPBF process parameters such as Scan Velocity (SV) of 550, 750, and 950 mm s−1, Laser Power (LP) of 460, 540, and 620 W, and Re-melting Range (RR) of 5, 25, and 45% were selected and studied. The results of the experimental investigation were supported by the use of Grey Relation Analysis (GRA). A comparative study was conducted with five distinct parameter combinations to investigate the relative influence of each parameter on the relative density, wear rate and elastic modulus. The research findings verify that the application of optimal SV of 750 mm s−1 and RR of 45% with maximum LP of 460 W resulted in the maximum relative density of 99.91%, minimal wear rate of 0.52 × 10−5 mm3/Nm, and maximum elastic modulus of 140.22 GPa.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3