Author:
Ren Dahua,Li Qiang,Qian Kai,Tan Xingyi
Abstract
Abstract
Vertically stacked heterostructures have received extensive attention because of their tunable electronic structures and outstanding optical properties. In this work, we have studied the structural, electronic and optical properties of vertically stacked GaS-SnS2 heterostructure under the frame of density functional theory. We find that the stacked GaS-SnS2 heterostructure is a semiconductor with suitable indirect band gaps of 1.82 eV, exhibiting a type-II band alignment for easily separating the photo-generated carriers. The electronic properties of GaS-SnS2 heterostructure can be effectively tuned by external strain and electric field. The optical absorption of GaS-SnS2 heterostructure is more enhanced by comparison with the GaS monolayer and SnS2 monolayer in the visible light. Our results suggest that GaS-SnS2 heterostructure is a promising candidate for the photocatalyst and photoelectronic devices in visible light.
Subject
General Physics and Astronomy
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献