Multiphase cooperation for multilevel strain accommodation in a single-crystalline BiFeO3 thin film

Author:

Choi Wooseon,Park Bumsu,Hwang Jaejin,Han Gyeongtak,Yang Sang-Hyeok,Lee Hyeon Jun,Lee Sung Su,Jo Ji Young,Borisevich Albina Y.,Jeong Hu Young,Oh Sang Ho,Lee Jaekwang,Kim Young-Min

Abstract

Abstract The functionalities and diverse metastable phases of multiferroic BiFeO3 (BFO) thin films depend on the misfit strain. Although mixed phase-induced strain relaxation in multiphase BFO thin films is well known, it is unclear whether a single-crystalline BFO thin film can accommodate misfit strain without the involvement of its polymorphs. Thus, understanding the strain relaxation behavior is key to elucidating the lattice strain–property relationship. In this study, a correlative strain analysis based on dark-field inline electron holography (DIH) and quantitative scanning transmission electron microscopy (STEM) was performed to reveal the structural mechanism for strain accommodation of a single-crystalline BFO thin film. The nanoscale DIH strain analysis results indicated a random combination of multiple strain states that acted as a primary strain relief, forming irregularly strained nanodomains. The STEM-based bond length measurement of the corresponding strained nanodomains revealed a unique strain accommodation behavior achieved by a statistical combination of multiple modes of distorted structures on the unit-cell scale. The globally integrated strain for each nanodomain was estimated to be close to −1.5%, irrespective of the nanoscale strain states, which was consistent with the fully strained BFO film on the SrTiO3 substrate. Density functional theory calculations suggested that strain accommodation by the combination of metastable phases was energetically favored compared to single-phase-mediated relaxation. This discovery allows a comprehensive understanding of strain accommodation behavior in ferroelectric oxide films, such as BFO, with various low-symmetry polymorphs.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3