Flow and clogging in a horizontal silo with a rotary obstacle

Author:

Xu Cong-Cong,Shi Qing-Fan,Liu Wei,Zheng Ning

Abstract

The external perturbation applied to a silo and the placement of an immobile obstacle before an exit are two common and effective ways to diminish clogging in the hopper/silo flow. Here, we incorporate the local perturbation into a fixed obstacle, and experimentally explore the effects of a rotary obstacle on clogging and the flowing characteristics in the horizontal silo flow driven by a conveyor belt. Even with a low spin rate, the total blocking probability that a particle constructs a stable blocking arch with its neighbors significantly drops. Correspondingly, the average flow rate of the particles through the exit abruptly rises, at least 1 order of magnitude better than that with an immobile obstacle and approaching the flow rate of continuous flow. The rotation enhances the breakage of clogging arches, which is responsible for improving the flowability in the horizontal silo. In addition, there always exists an optimal obstacle position at which the total blocking probability is minimal and the average flow rate peaks, regardless of the spin rate. Finally, clogging is relieved with the increase of the driving velocity of the conveyor belt, showing a “fast is fast” effect that is opposite to the “fast is slow” effect in other systems such as crowd evacuation and gravity-driven hoppers.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3