Effect of applied electric fields on supralinear dendritic integration of interneuron

Author:

Fan 樊 Ya-Qin 亚琴,Wei 魏 Xi-Le 熙乐,Lu 卢 Mei-Li 梅丽,Yi 伊 Guo-Sheng 国胜

Abstract

Evidences show that electric fields (EFs) induced by the magnetic stimulation could modulates brain activities by regulating the excitability of GABAergic interneuron. However, it is still unclear how and why the EF-induced polarization affects the interneuron response as the interneuron receives NMDA synaptic inputs. Considering the key role of NMDA receptor-mediated supralinear dendritic integration in neuronal computations, we suppose that the applied EFs could functionally modulate interneurons’ response via regulating dendritic integration. At first, we build a simplified multi-dendritic circuit model with inhomogeneous extracellular potentials, which characterizes the relationship among EF-induced spatial polarizations, dendritic integration, and somatic output. By performing model-based singular perturbation analysis, it is found that the equilibrium point of fast subsystem can be used to asymptotically depict the subthreshold input–output (sI/O) relationship of dendritic integration. It predicted that EF-induced strong depolarizations on the distal dendrites reduce the dendritic saturation output by reducing driving force of synaptic input, and it shifts the steep change of sI/O curve left by reducing stimulation threshold of triggering NMDA spike. Also, the EF modulation prefers the global dendritic integration with asymmetric scatter distribution of NMDA synapses. Furthermore, we identify the respective contribution of EF-regulated dendritic integration and EF-induced somatic polarization to an action potential generation and find that they have an antagonistic effect on AP generation due to the varied NMDA spike threshold under EF stimulation.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3