Detailed structural, mechanical, and electronic study of five structures for CaF2 under high pressure*

Author:

Guo Ying,Fang Yumeng,Li Jun

Abstract

Detailed density functional theory (DFT) calculations of the structural, mechanical, thermodynamic, and electronic properties of crystalline CaF2 with five different structures in the pressure range of 0 GPa–150 GPa are performed by both GGA (generalized gradient approximation)-PBE (Perdew–Burke–Ernzerhof) and LDA (local density approximation)-CAPZ (Cambridge Serial Total Energy Package). It is found that the enthalpy differences imply that the fluorite phase → PbCl2-type phase → Ni2In-type phase transition in CaF2 occurs at P GGA1 = 8.0 GPa, P GGA2 = 111.4 GPa by using the XC of GGA, and P LDA1 = 4.5 GPa, P LDA2 = 101.7 GPa by LDA, respectively, which is consistent with previous experiments and theoretical conclusions. Moreover, the enthalpy differences between PbCl2-type and Ni2In-type phases in one molecular formula become very small at the pressure of about 100 GPa, indicating the possibility of coexistence of two-phase at high pressures. This may be the reason why the transition pressure of the second phase transition in other reports is so huge (68 GPa–278 GPa). The volume changed in the second phase transition are also consistent with the enthalpy difference result. Besides, the pressure dependence of mechanical and thermodynamic properties of CaF2 is studied. It is found that the high-pressure phase of Ni2In-type structure has better stiffness in CaF2 crystal, and the hardness of the material has hardly changed in the second phase transition. Finally, the electronic structure of CaF2 is also analyzed with the change of pressure. By analyzing the band gap and density of states, the large band gap indicates the CaF2 crystal is always an insulator at 0 GPa–150 GPa.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3