Microstructure, optical, and photoluminescence properties of β-Ga2O3 films prepared by pulsed laser deposition under different oxygen partial pressures*

Author:

Cui Rui-Rui,Zhang Jun,Luo Zi-Jiang,Guo Xiang,Ding Zhao,Deng Chao-Yong

Abstract

The β-Ga2O3 films are prepared on polished Al2O3 (0001) substrates by pulsed laser deposition at different oxygen partial pressures. The influence of oxygen partial pressure on crystal structure, surface morphology, thickness, optical properties, and photoluminescence properties are studied by x-ray diffraction (XRD), atomic force microscope (AFM), scanning electron microscope (SEM), spectrophotometer, and spectrofluorometer. The results of x-ray diffraction and atomic force microscope indicate that with the decrease of oxygen pressure, the full width at half maximum (FWHM) and grain size increase. With the increase of oxygen pressure, the thickness of the films first increases and then decreases. The room-temperature UV-visible (UV-Vis) absorption spectra show that the bandgap of the β-Ga2O3 film increases from 4.76 eV to 4.91 eV as oxygen pressure decreasing. Room temperature photoluminescence spectra reveal that the emission band can be divided into four Gaussian bands centered at about 310 nm (∼ 4.0 eV), 360 nm (∼ 3.44 eV), 445 nm (∼ 2.79 eV), and 467 nm (∼ 2.66 eV), respectively. In addition, the total photoluminescence intensity decreases with oxygen pressure increasing, and it is found that the two UV bands are related to self-trapped holes (STHs) at O1 sites and between two O2-s sites, respectively, and the two blue bands originate from V Ga 2 at Ga1 tetrahedral sites. The photoluminescence mechanism of the films is also discussed. These results will lay a foundation for investigating the Ga2O3 film-based electronic devices.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3