Author:
Lu Bin,Ma Xin,Wang Dawei,Chai Guoqiang,Dong Linpeng,Miao Yuanhao
Abstract
Nanowires with gate-all-around (GAA) structures are widely considered as the most promising candidate for 3-nm technology with the best ability of suppressing the short channel effects, and tunneling field effect transistors (TFETs) based on GAA structures also present improved performance. In this paper, a non-quasi-static (NQS) device model is developed for nanowire GAA TFETs. The model can predict the transient current and capacitance varying with operation frequency, which is beyond the ability of the quasi-static (QS) model published before. Excellent agreements between the model results and numerical simulations are obtained. Moreover, the NQS model is derived from the published QS model including the current–voltage (I–V) and capacitance–voltage (C–V) characteristics. Therefore, the NQS model is compatible with the QS model for giving comprehensive understanding of GAA TFETs and would be helpful for further study of TFET circuits based on nanowire GAA structure.
Subject
General Physics and Astronomy
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献