Improving the teleportation of quantum Fisher information under non-Markovian environment

Author:

Li Yan-Ling,Zeng Yi-Bo,Yao Lin,Xiao Xing

Abstract

Quantum teleportation is designed to send an unknown quantum state between two parties. In the perspective of remote quantum metrology, one may be interested in teleporting the information that is encoded by physical parameters synthesized by quantum Fisher information (QFI). However, the teleported QFI is often destroyed by the unavoidable interaction between the system and the environment. Here, we propose two schemes to improve the teleportation of QFI in the non-Markovian environment. One is to control the quantum system through the operations of weak measurement (WM) and corresponding quantum measurement reversal (QMR). The other is to modify the quantum system based on the monitoring result of the environment (i.e., environment-assisted measurement, EAM). It is found that, in the non-Markovian environment, these two schemes can improve the teleportation of QFI. By selecting the appropriate strengths of WM and QMR, the environment noise can be completely eliminated and the initial QFI is perfectly teleported. A comprehensive comparison shows that the second scheme not only has a higher probability of success than the first one, but also has a significant improvement of the teleported QFI.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3