Effects of air damping on quality factors of different probes in tapping mode atomic force microscopy

Author:

Zeng 曾 Yu 瑜,Liu 刘 Guo-Lin 国林,Liu 刘 Jin-Hao 锦灏,Wei 魏 Zheng 征

Abstract

Abstract The AFM probe in tapping mode is a continuous process of energy dissipation, from moving away from to intermittent contact with the sample surfaces. At present, studies regarding the energy dissipation mechanism of this continuous process have only been reported sporadically, and there are no systematic explanations or experimental verifications of the energy dissipation mechanism in each stage of the continuous process. The quality factors can be used to characterize the energy dissipation in TM-AFM systems. In this study, the vibration model of the microcantilever beam was established, coupling the vibration and damping effects of the microcantilever beam. The quality factor of the vibrating microcantilever beam under damping was derived, and the air viscous damping when the probe is away from the sample and the air squeeze film damping when the probe is close to the sample were calculated. In addition, the mechanism of the damping effects of different shapes of probes at different tip–sample distances was analyzed. The accuracy of the theoretical simplified model was verified using both experimental and simulation methods. A clearer understanding of the kinetic characteristics and damping mechanism of the TM-AFM was achieved by examining the air damping dissipation mechanism of AFM probes in the tapping mode, which was very important for improving both the quality factor and the imaging quality of the TM-AFM system. This study’s research findings also provided theoretical references and experimental methods for the future study of the energy dissipation mechanism of micro-nano-electromechanical systems.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3