Speed of sound measurements and derived third and fourth acoustic virial coefficients of supercritical neon

Author:

Dietl Tobias,El Hawary Ahmed,Gavioso Roberto MORCID,Hellmann RobertORCID,Meier KarstenORCID

Abstract

Abstract We report comprehensive and accurate measurements of the speed of sound in neon. These measurements were carried out by a double-path-length pulse-echo technique and cover the temperature range between 200 K and 420  K with pressures up to 100 MPa. The standard uncertainties are 1.9 mK in temperature, 22 parts in 106 in pressure and 35 parts in 106 in speed of sound. The third and fourth acoustic virial coefficients of neon were derived from the speed of sound data in the temperature range of the measurements by fitting a fourth-order acoustic virial expansion in pressure with the second acoustic virial coefficient constrained from first-principles calculations. To support our claimed uncertainty, we determined the ratio M / γ 0 between the molar mass M and the ideal-gas heat capacity ratio γ 0 of the neon sample with a relative standard uncertainty of 7.7 parts in 106 by additional speed of sound measurements using a spherical resonator at 273.16 K.

Funder

EU EMPIR programme

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3