Modeling the electronic structure of organic materials: a solid-state physicist’s perspective

Author:

Cocchi CaterinaORCID,Guerrini MicheleORCID,Krumland Jannis,Trung Nguyen Ngoc,Valencia Ana MORCID

Abstract

Abstract Modeling the electronic and optical properties of organic semiconductors remains a challenge for theory, despite the remarkable progress achieved in the last three decades. The complexity of these systems, including structural (dis)order and the still debated doping mechanisms, has been engaging theorists with different background. Regardless of the common interest across the various communities active in this field, these efforts have not led so far to a truly interdisciplinary research. In the attempt to move further in this direction, we present our perspective as solid-state theorists for the study of molecular materials in different states of matter, ranging from gas-phase compounds to crystalline samples. Considering exemplary systems belonging to the well-known families of oligo-acenes and -thiophenes, we provide a quantitative description of electronic properties and optical excitations obtained with state-of-the-art first-principles methods such as density-functional theory and many-body perturbation theory. Simulating the systems as gas-phase molecules, clusters, and periodic lattices, we are able to identify short- and long-range effects in their electronic structure. While the latter are usually dominant in organic crystals, the former play an important role, too, especially in the case of donor/accepetor complexes. To mitigate the numerical complexity of fully atomistic calculations on organic crystals, we demonstrate the viability of implicit schemes to evaluate band gaps of molecules embedded in isotropic and even anisotropic environments, in quantitative agreement with experiments. In the context of doped organic semiconductors, we show how the crystalline packing enhances the favorable characteristics of these systems for opto-electronic applications. The counter-intuitive behavior predicted for their electronic and optical properties is deciphered with the aid of a tight-binding model, which represents a connection to the most common approaches to evaluate transport properties in these materials.

Funder

Bundesministerium für Bildung und Forschung

Deutsche Forschungsgemeinschaft

Niedersächsisches Ministerium für Wissenschaft und Kultur

Publisher

IOP Publishing

Subject

Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3