Abstract
Abstract
Despite structural and processing-induced imperfections, wafer-scale chemical vapor deposited (CVD) graphene today is commercially available and has emerged as a versatile form that can be readily transferred to desired substrates for various nanoelectronic and spintronic applications. In particular, over the past decade, significant advancements in CVD graphene synthesis methods and experiments realizing high-quality charge and spin transport have been achieved. These include growth of large-grain graphene, new processing methods, high-quality electrical transport with high-carrier mobility, micron-scale ballistic transport, observations of quantum and fractional quantum Hall effect, as well as the spintronic performance of extremely long spin communication over tens of micrometers at room temperature with robust spin diffusion lengths and spin lifetimes. In this short review, we discuss the progress in recent years in the synthesis of high-quality, large-scale CVD graphene and improvement of the electrical and spin transport performance, particularly towards achieving ballistic and long-distance spin transport that show exceptional promise for next-generation graphene electronic and spintronic applications.
Funder
Vetenskapsrådet
Svenska Forskningsrådet Formas
Stiftelsen Olle Engkvist Byggmastare
Wenner-Gren Stiftelserna
Carl Tryggers Stiftelse för Vetenskaplig Forskning
Energimyndigheten
Subject
Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献