Applications of soft biomaterials based on organic and hybrid thin films deposited from the vapor phase

Author:

Marcelja Sophie,Demelius LisanneORCID,Ali Taher AbuORCID,Aghito Margherita,Muralter FabianORCID,Rodriguez Gabriel Hernandez,Kräuter MarianneORCID,Unger KatrinORCID,Wolfsberger Lukas,Coclite Anna MariaORCID

Abstract

Abstract Soft biomaterials are a crucial component in several application fields. They are used, for example, in biomedical implants, biosensors, drug delivery systems as well as in tissue engineering. In parallel to extensive ongoing efforts to synthesize new materials, the development of means to tailor the materials’ surface properties and thus their interaction with the environment is an important field of research. This has led to the emergence of several surface modification techniques that enable the exploitation of biomaterials in a broader range of technologies. In particular, the use of functional thin films can enable a plethora of biomedical applications by combining advantageous bulk properties of the substrate (e.g. flexibility, lightweight, structural strength) with tailored surface properties of the thin film (e.g. enhancing/prevention of cell proliferation, controlled drug release). For some biomedical applications, thin films can also be the main functional components, e.g. in biosensors. The present review focuses on recent developments in the applications of soft biomaterials based on thin films deposited from the vapor phase. In the field of soft biomaterials, the possibility of depositing from the vapor phase—without the need for any solvents—offers the unprecedented benefit that no toxic leachables are included in the biomaterial. Further, due to the complete lack of solvents and chemicals overall being used in small quantities only, depositing thin films from the vapor phase can be a more sustainable choice than other techniques that are commonly used.

Publisher

IOP Publishing

Subject

Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3