Kinetic investigation of the planar multipole resonance probe under arbitrary pressure

Author:

Wang ChunjieORCID,Friedrichs Michael,Oberrath JensORCID,Brinkmann Ralf PeterORCID

Abstract

Abstract A new plasma diagnostic tool called planar multipole resonance probe (pMRP) has been proposed in the past decade. It has a minimally invasive structure and allows simultaneous measurement of electron density, temperature, and collision frequency. Previous work has investigated the behavior of the pRMP by the Drude model, which misses kinetic effects, and the collisionless kinetic model, which misses collisional damping. To further study the pMRP at arbitrary pressure, a collisional kinetic model is proposed in this paper. The electron dynamics is described by the kinetic equation, which considers the electron-neutral elastic collision. Under the electrostatic approximation, the kinetic equation is coupled to the Poisson equation. The real part of the general complex admittance is calculated to describe the spectral response of the probe–plasma system. The calculated spectra of the idealized pMRP demonstrate that this collisional kinetic model can capture both collisionless kinetic damping and collisional damping. This model overcomes the limitations of the Drude model and the collisionless kinetic model and allows discussion of the validity of simpler models.

Funder

Deutsche Forschungsgemeinschaft

Publisher

IOP Publishing

Subject

Condensed Matter Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3