Electron density and electron temperature measurements in an atmospheric pressure plasma interacting with liquid anode

Author:

Yue YuanfuORCID,Bruggeman Peter JORCID

Abstract

Abstract Plasma driven solution electrochemistry has received increasing attention during the last decade for a variety of applications including nanomaterial synthesis. We report the temporal and spatial resolved electron density and temperature for a negative pulsed DC discharge in helium with N2 shielding gas impinging on a liquid anode as measured by Thomson scattering spectroscopy. A stable radial plasma contraction and significant plasma-enhanced N2 mixing was found for the longest investigated pulse width (9 μs). It was found that the plasma enhanced N2 mixing significantly impacts the plasma morphology and electron properties. In addition, we observed a significant increase in electron temperature coinciding with a drop in electron density near the liquid anode surface, which is attributed to electron attachment and electron-water ion cluster recombination enhanced by plasma-induced water evaporation. This near anode surface phenomenon is argued to be responsible for the discharge stabilization by preventing the development of a thermal instability in spite of the significant gas heating. This increase in electron temperature near the anode suggests the presence of a significant flux of hot electrons into solution which might enable non-equilibrium electron-driven reactions in the liquid phase.

Funder

Army Research Office

Publisher

IOP Publishing

Subject

Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3