Surface production of negative deuterium ions from plasma-exposed boron doped diamond and graphite: work function measurements using photoemission yield spectroscopy

Author:

Magee RyanORCID,Maurice Brandan,Demiane JoeyORCID,layet Jean-Marc,Gans TimoORCID,Dedrick James PORCID,Cartry GillesORCID

Abstract

Abstract Negative-ion sources are of considerable interest for applications such as materials processing and neutral beam injection for magnetic confinement fusion. The efficient production of negative ions in these sources often relies on surface production. Work function measurements are critical to enable a detailed understanding of the mechanisms that underpin this. In this study we used a combination of photoemission yield spectroscopy and the Fowler method to determine the work functions of boron doped diamond (BDD) and highly oriented pyrolytic graphite (HOPG) directly after exposure to a low-pressure inductively coupled deuterium plasma (150 W, 2 Pa). A magnetised retarding field energy analyser is used to measure the negative ion current from the samples. During plasma exposure, samples are biased at −130 V or −60 V and their temperature is varied between 50 C and 750 C. The results show that the increasing work function of the plasma exposed HOPG occurs over the same sample temperature range as the decreasing negative-ion current. In contrast, the work function of BDD does not show a clear relationship with negative-ion current, suggesting that different mechanisms influence the negative-ion production of metal-like HOPG and dielectric-like BDD. The necessity for an additional fitting parameter for the Fowler fits to BDD suggests that its electronic properties are changing under plasma exposure, unlike HOPG. For both materials, the maximum photocurrent measured from the samples displays a strong similarity with negative-ion current, suggesting they are driven by a common mechanism. The in-situ measurement of the work function using non-invasive techniques is of interest for the development of negative ion sources.

Funder

Région Sud PACA through the Appel à projets recherche 2021 - Volet exploratoire - project SARDINE

EPSRC Centre for Doctoral Training in Fusion Energy Science and Technology

Initiative of Excellence of Aix-Marseille University

Publisher

IOP Publishing

Subject

Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3