Integrating direct air capture with small modular nuclear reactors: understanding performance, cost, and potential

Author:

Bertoni Luca,Roussanaly Simon,Riboldi Luca,Anantharaman Rahul,Gazzani MatteoORCID

Abstract

Abstract Direct air capture (DAC) is a key component in the transition to net-zero society. However, its giga-tonne deployment faces daunting challenges in terms of availability of both financial resources and, most of all, large quantities of low-carbon energy. Within this context, small modular nuclear reactors (SMRs) might potentially facilitate the deployment of DAC. In the present study, we present a detailed thermodynamic analysis of integrating an SMR with solid sorbent DAC. We propose different integration designs and find that coupling the SMR with DAC significantly increases the use of thermal energy produced in the nuclear reactor: from 32% in a stand-alone SMR to 76%–85% in the SMR-DAC system. Moreover, we find that a 50–MW SMR module equipped with DAC could remove around 0.3 MtCO2 every year, while still producing electricity at 24%–42% of the rated power output. Performing a techno-economic analysis of the system, we estimate a net removal cost of around 250 €/tCO2. When benchmarking it to other low-carbon energy supply solutions, we find that the SMR-DAC system is potentially more cost-effective than a DAC powered by high-temperature heat pumps or dedicated geothermal systems. Finally, we evaluate the potential of future deployment of SMR-DAC in China, Europe, India, South Africa and the USA, finding that it could enable up to around 96 MtCO2/year by 2035 if SMRs prove to be cost-competitive. The impact of regional differences on the removal cost is also assessed.

Funder

Research Council of Norway

Publisher

IOP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3