Muscle-inspired stiffness-tunable flexible fiber jamming structure for wearable robots *

Author:

Ma JunlinORCID,Chen Diansheng,Liu ZheORCID,Li Jialing,Zeng Zihan,Yin Yingxitong,Zhang Xianglin,Shu Chen,Zhu Yaohui,Fu Zhihan,Jiang YongkangORCID

Abstract

Abstract Soft robotics have found their tremendous application prospects in wearable robots due to the inherent compliance of soft materials when interacting with human bodies. However, the limited load-bearing and output capabilities impeded their application in real world. Variable stiffness design contributes to tackling this problem by enhancing the overall structural rigidity. Nevertheless, most of current jamming-based variable stiffness structures realize their stiffness enhancement by squeezing discrete rigid elements, resulting in the loss of structural compliance in the high stiffness state, which could significantly reduce the deformability and even injure the individuals when utilized in wearable robots. In this paper, we propose a muscle-inspired stiffness-continuously-adjustable flexible fiber jamming (FFJ) structure for soft wearable robots. The FFJ structure can achieve continuous stiffness-variation by controlling the fiber overlapping length, which maintains stretchability even in the high stiffness state. We provide a theoretical model to analyze the mechanical performance of the proposed FFJ structure with different design parameters, and verify the model experimentally. The preliminary results show that we achieved 9 times of stiffness enhancement of the proposed FFJ structure by controlling the vacuum pressure, and the maximum tensile stiffness is 4.1 N mm−1. We further demonstrated the effectiveness of the proposed FFJ structure on wearable robots in three different working scenarios: active finger rehabilitation, active elbow rehabilitation, and passive trunk support. The results show that the FFJ structure was able to provide controllable impedance force for active finger/elbow rehabilitation, and help support the human body during long-term labor. This work broadens the frontiers of soft wearable robots and leads a way to the future design of soft and strong robots and devices.

Funder

National Natural Science Foundation of China

Shanghai Municipal Education Commission

Publisher

IOP Publishing

Reference36 articles.

1. Soft robotics;Whitesides;Angew Chem., Int. Ed.,2018

2. Soft robotics: technologies and systems pushing the boundaries of robot abilities;Laschi;Sci. Robot.,2016

3. Soft robotic origami crawler;Ze;Sci. Adv.,2022

4. Soft robotics in minimally invasive surgery;Runciman;Soft Robot.,2019

5. An ultralightweight and living legged robot;Vo Doan;Soft Robot.,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3