A novel dragonfly wing shape auxetic tubular structure with negative Poisson’s ratio

Author:

Augusto Gomes RafaelORCID,Antonio de Oliveira Lucas,Brendon Francisco Matheus,Ferreira Gomes Guilherme

Abstract

Abstract Mechanical structures abilities to absorb and dissipate energy have a variety of applications in daily life, including the ability to dampen mechanical vibrations and shock effects. In the present study, inspired by the dragonfly wing (DFW) shape, a novel auxetic unit cell was developed with the goal of proposing a novel structure with a lower stress concentrator and consequently increasing energy absorption. The negative Poisson’s ratio behavior was also studied. The DFW shaped unit cells were applied in a tubular structure, and the experimental samples were produced utilizing an additive manufacturing process with polylactic acid filament. To validate the ability to absorb energy of the novel unit cell, a comparison was proposed with the classical reentrant auxetic tubular structure following two different parameters: weight and the number of unit cells being developed in two different DFW structures. The study of the novel unit cell was performed using finite element analysis and experimental testing, and excellent agreement was observed between them. As a result, the bio-inspired DFWs shape in both configurations proposed when compared to the classical reentrant presented an excellent result in terms of absorbing energy, where the structure with the same quantity of unit cells and the structure with the same weight respectively absorb 163% and 79% when compared to the classical Reentrant, finally the new structure presented the negative Poisson’s ratio of −0.5, presenting an auxetic behavior and being able to resist more force and displacement

Funder

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Publisher

IOP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3