Abstract
Abstract
Hysteresis, an intrinsic characteristic of piezoelectric (PZT) actuators, has been demonstrated to dramatically reduce the capability and stability of the system. This paper proposes a novel computationally efficient model to describe nonlinear and hysteresis behaviors of PZT actuators. First of all, the model parameters are analyzed to investigate their effects on the output response. Then, a modified cuckoo search algorithm is used to identify the model parameters, without falling into the local optimum problems through introducing adaptive egg discovery probability and step length control factor. Further, the performance of the proposed model is validated using experimental data, via the comparison with classical Bouc-Wen and Prandtl-Ishlinskii hysteresis models. Finally, the rate-dependence of the parameters of proposed model is analyzed, which contributes to a generalized hysteresis model for the compensation control application of PZT actuators.
Subject
Electrical and Electronic Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics,Civil and Structural Engineering,Signal Processing
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献