Modeling the non-linear rheological behavior of magnetorheological gel using a computationally efficient model

Author:

Zhang GuangORCID,Li YanchengORCID,Yu YangORCID,Wang Huixing,Wang Jiong

Abstract

Abstract Magnetorheological (MR) gel is a novel generation of smart MR material, which has the inherent hysteretic properties and strain stiffening behaviors that are dependent on applied excitation, i.e. magnetic field. The main challenge for the application of the MR gel is the accurate reproduction of the above characteristics by a computationally efficient model that can predict the dynamic stress-strain/rate responses. In this work, parametric modeling on the non-linear rheological behavior of MR gel is conducted. Firstly, a composite MR gel sample was developed by dispersing carbon iron particles into the polyurethane matrix. The dynamic stress-strain/rate responses of the MR gel are obtained using a commercial rheometer with strain-controlled mode under harmonic excitation with frequencies of 0.1 Hz, 5 Hz and 15 Hz and current levels of 1 A and 2 A at a fixed amplitude of 10%. Following a mini-review on the available mathematical models, the experimental data is utilized to fit into the models to find the best candidate utilizing a genetic algorithm. Then, a statistical analysis is conducted to evaluate the model’s performance. The non-symmetrical Bouc–Wen model outperforms all other models in reproducing the non-linear behavior of MR gel. Finally, the parameter sensitivity analysis is employed to simplify the non-symmetrical Bouc–Wen model and then the parameter generalization is conducted and verified for the modified non-symmetrical Bouc–Wen model.

Funder

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics,Civil and Structural Engineering,Signal Processing

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3