Effect of ambient temperature and respiration rate on nasal dominance: preliminary findings from a nostril-specific wearable

Author:

Kumar Amit,Joshi DeepakORCID

Abstract

Abstract The nasal dominance (ND) determination is crucial for nasal synchronized ventilator, optimum nasal drug delivery, identifying brain hemispheric dominance, nasal airway obstruction surgery, mindfulness breathing, and for possible markers of a conscious state. Given these wider applications of ND, it is interesting to understand the patterns of ND with varying temperature and respiration rates. In this paper, we propose a method which measures peak-to-peak temperature oscillations (difference between end-expiratory and end-inspiratory temperature) for the left and right nostrils during nasal breathing. These nostril-specific temperature oscillations are further used to calculate the nasal dominance index (NDI), nasal laterality ratio (NLR), inter-nostril correlation, and mean of peak-to-peak temperature oscillation for inspiratory and expiratory phase at (1) different ambient temperatures of 18 °C, 28 °C, and 38 °C and (2) at three different respiration rate of 6 bpm, 12 bpm, and 18 bpm. The peak-to-peak temperature (T pp) oscillation range (averaged across participants; n = 8) for the left and right nostril were 3.80 ± 0.57 °C and 2.34 ± 0.61 °C, 2.03 ± 0.20 °C and 1.40 ± 0.26 °C, and 0.20 ± 0.02 °C and 0.29 ± 0.03 °C at the ambient temperature of 18 °C, 28 °C, and 38 °C respectively (averaged across participants and respiration rates). The NDI and NLR averaged across participants and three different respiration rates were 35.67 ± 5.53 and 2.03 ± 1.12; 8.36 ± 10.61 and 2.49 ± 3.69; and −25.04 ± 14.50 and 0.82 ± 0.54 at the ambient temperature of 18 °C, 28 °C, and 38 °C respectively. The Shapiro–Wilk test, and non-parametric Friedman test showed a significant effect of ambient temperature conditions on both NDI and NLR. No significant effect of respiration rate condition was observed on both NDI and NLR. The findings of the proposed study indicate the importance of ambient temperature while determining ND during the diagnosis of breathing disorders such as septum deviation, nasal polyps, nosebleeds, rhinitis, and nasal fractions, and in the intensive care unit for nasal synchronized ventilator.

Publisher

IOP Publishing

Subject

Pulmonary and Respiratory Medicine

Reference55 articles.

1. Anatomy and physiology of the upper airway;Sahin-Yilmaz;Proc. Am. Thorac. Soc.,2011

2. The nasal cycle before and after nasal septoplasty;Letzel;Eur. Arch. Oto-Rhino-Laryngol.,2022

3. New insights into the breathing physiology from transient respiratory nasal simulation;Bradshaw;Phys. Fluids,2022

4. Anatomy and physiology of nasal obstruction;Hsu;Otolaryngol. Clin. North Am.,2018

5. Evaluation of upper airway obstruction-an ENT perspective;Wheeler;Pulm. Pharmacol. Ther.,2008

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3