Large eddy simulation of the variable density mixing layer

Author:

Huang J X,Hug S N,McMullan W A

Abstract

Abstract In this paper we perform large eddy simulations of variable density mixing layers, which originate from initially laminar conditions. The aim of this work is to capture the salient flow physics present in the laboratory flow. This is achieved through varying the nature of the inflow condition, and assessing the vortex structure present in the flow. Two distinct inflow condition types are studied; the first is an idealised case obtained from a mean inflow velocity profile with superimposed pseudo-white-noise, and the second is obtained from an inflow generation technique. The inflow conditions generated have matching mean and root mean squared statistics. Validation of the simulations is achieved through grid dependency and subgrid-scale model testing. Regardless of the inflow condition type used, the change in growth rate of the mixing layer caused by the density ratio is captured. It is found that the spacing of the large-scale spanwise structure is a function of the density ratio of the flow. Detailed interrogation of the simulations shows that the streamwise vortex structure present in the mixing layer depends on the nature of the imposed inflow condition. Where white-noise fluctuations provide the inflow disturbances, a spatially-stationary streamwise structure is absent. Where the inflow generator is used, a spatially stationary streamwise structure is present, which appears as streaks in plan-view visualisations. The stationary streamwise structure evolves such that the ratio of streamwise structure wavelength to local vorticity thickness asymptotes to unity, independent of the density ratio. This value is in agreement with previous experimental studies. Recommendations are made on the requirements of inflow condition modelling for accurate mixing layer simulations.

Publisher

IOP Publishing

Subject

Fluid Flow and Transfer Processes,General Physics and Astronomy,Mechanical Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3