Abstract
Abstract
The effect of impeller geometry on bubble breakage in a stirred tank was investigated for a range of impeller Reynolds number (Re) using a high speed imaging method. The bubble dynamic behavior and breakage mechanism were investigated for four different impeller geometries namely, two-flat blades impeller, four-flat blades impeller, four-twisted blades impeller, and two-pinned blades impeller. The performance of each geometry was investigated by determining the breakage probability and number of fragments (daughter bubbles) produced. The contributions of dominant breakage mechanisms for each geometry were specified and discussed by identifying the breakage locations relative to the impeller. Three main breakage mechanisms were observed, namely: bubble collision with the blade, bubble breakage by blade shear, and breakage by turbulent fluctuation away from the blade. The number of fragments by each breakage mechanism was specified for the entire range of Re. The four-flat blades impeller exhibited the highest breakage probability and produced the highest number of fragments. The Pinned blades gave a high performance compared to the smooth blades, especially at higher Re. This is considered to be due to the high turbulence level provided by this type of impeller. The twisted blades impeller showed low bubble breakage probability compared with the other geometries. Breakages by collision with the blades and by shearing effect resulted in a higher number of fragments compared to the breakages caused by turbulent fluctuations. The number of fragments produced by ‘collision with blade’ exhibited a higher dependence on Re than by ‘blade shear’ or by ‘turbulent fluctuations’.
Subject
Fluid Flow and Transfer Processes,General Physics and Astronomy,Mechanical Engineering
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献