Analysis and validation of mathematical models of secondary velocities along vertical and transverse directions in wide open-channel turbulent flows

Author:

Kundu SnehasisORCID,Chattopadhyay TitasORCID

Abstract

Abstract Cellular secondary flows are inevitably present in turbulent flows through ducts, natural or artificial channels, and compound channels. Secondary currents significantly modify the characteristics of turbulent quantities, the pattern of primary flow velocity by causing dip-phenomenon. To understand the detailed mechanism and hidden cause, modelling of secondary flow velocities is crucial. In this study, proper mathematical models of secondary flow velocities along vertical and transverse directions are proposed for steady and uniform turbulent flow through wide open channels with equal smooth and rough bed strips. Starting from the continuity and the Reynolds averaged Navier–Stokes equations, governing equation for secondary velocity is derived first and then using appropriate boundary conditions (no-slip boundary conditions at channel bottom and free surface, and maximum vertical velocity in magnitude at the interface of two cellular secondary cells and at mid-depth of the channel. All these conditions are consistent with several experimental observations). A new model of the streamwise Reynolds shear stress is proposed for the entire cross-sectional plane and using it, the analytical solutions are obtained. Proposed models include the effects of viscosity of the fluid and the eddy viscosity model of turbulence. All suggested models are validated with existing experimental data in rectangular open-channel flows, compound open channel flows, and duct flows, and satisfactory results are obtained. Furthermore, models are also compared with existing empirical models from literature to show the effectiveness and superiority of proposed models. Apart from these, the obtained results from this study are used to investigate the effects of vertical and transverse secondary flow velocities on the settling velocity vector in a cross-sectional plane. Effective alternative models for the settling velocity vector are suggested. The model of settling velocity vector is also compared with the existing model. Finally, all results are justified from physical viewpoints.

Publisher

IOP Publishing

Subject

Fluid Flow and Transfer Processes,General Physics and Astronomy,Mechanical Engineering

Reference55 articles.

1. Concentration profiles for fine and coarse sediments suspended by waves over ripples: an analytical study with the 1-dv gradient diffusion model;Absi;Adv. Water Resour.,2010

2. Turbulent secondary flows;Bradshaw;Ann. Rev. Fluid Mech.,1987

3. The production and diffusion of vorticity in duct flow;Brundrett;J. Fluid Mech.,1964

4. Flow-shear interaction in rectangular open channels;Chiu,1985

5. Computation of 3-d flow and shear in open channel;Chiu;J. Hydraul. Div. ASCE,1983

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3