Physical properties and maximum allowable mass-radius relation of complexity-free compact stellar objects within modified gravity formalism*

Author:

Jasim M. K.,Maurya S. K.,Errehymy Abdelghani,Khalid Jassim Ali,Sooppy Nisar Kottakkaran,Abdel-Aty Abdel-Haleem

Abstract

Abstract This paper investigates the physical properties and predicted radii of compact stars generated by the Tolman-IV complexity-free model within the background of modified gravity theory, particularly the -gravity theory, under complexity formalism for a spherically symmetric spacetime proposed by L. Herrera [Phys Rev D 97: 044010, 2018]. By solving the resulting set of differential equations, we obtain the explicit forms of the energy-momentum (EM) tensor components, including the density, radial pressure, and tangential pressure. The influence of the parameter χ on various physical properties of the star is thoroughly investigated. The model undergoes a series of rigorous tests to determine its physical relevance. The findings indicate that the model exhibits regularity, stability, and a surface with vanishing pressure. The boundary of this surface is determined by carefully selecting the parameter space. The complexity method employed in gravity offers an interesting approach for developing astrophysical models that are consistent with observable events as demonstrated by recent experiments. In this regard, we use observational data from the GW190814 event, detected by the LIGO and Virgo observatories, to investigate the validity of the Tolman-IV model in gravity. The analysis includes comparing the model's predictions with the observed characteristics of the compact object involved in the merger. In addition, data from two-millisecond pulsars, PSR J1614-2230 and PSR J0952-0607, are incorporated to further constrain the theoretical theories. However, we present a diagram depicting the relationship between the total mass and radius of the compact object candidates for different values of χ.

Funder

The Research Council

Publisher

IOP Publishing

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3