Author:
Liaqat Asia,Hussain Ibrar
Abstract
Abstract
The energy content of the charged-Kerr (CK) spacetime surrounded by dark energy (DE) is investigated using approximate Lie symmetry methods for the differential equations. For this, we consider three different DE scenarios: cosmological constant with an equation of state parameter
, quintessence DE with an equation of state parameter
, and a frustrated network of cosmic strings with an equation of state parameter
. To study the gravitational energy of the CK black hole surrounded by the DE, we explore the symmetries of the 2nd-order perturbed geodesic equations. It is noticed, for all the values of ω, the exact symmetries are recovered as 2nd-order approximate trivial symmetries. These trivial approximate symmetries give the rescaling of arc length parameter s in this spacetime which indicates that the energy in the underlying spacetime has to be rescaled by a factor that depends on the black hole parameters and the DE parameter. This rescaling factor is compared with the factor of the CK spacetime found in [Hussain et al. Gen. Relativ. Gravit. (2009)] and the effects of the DE on it are discussed. It is observed that for all the three values of the equation of state parameter ω, the effect of DE results in decreased energy content of the black hole spacetime, regardless of values of the charge Q, spin a and the DE parameter α. This reduction in the energy content due to the involvement of the DE favours the idea of mass reduction of black holes by accretion of DE given by [Babichev et al. Phys. Rev. Lett. (2004)].
Subject
Astronomy and Astrophysics,Instrumentation,Nuclear and High Energy Physics
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献